Here are the Matlab codes for solving few Numerical Methods problems. As per our course requirement for Mechanical Engineering, sophomore course, we had to study Numerical Methods and the Matlab programming was in practical portion. And I have tried to share few codes with you for your convenience with codes.
This page includes Bisection Method, Regula-Falsi Method, Secant Method, General Newton Method, Rapshon Newton Method, Euler Method, Jacobi Method, Gauss Seidal Method, Simpson(1/3), Simpson(3/8) and Trapeziodal Rule.
I have tried all the codes by making function file.
This page includes Bisection Method, Regula-Falsi Method, Secant Method, General Newton Method, Rapshon Newton Method, Euler Method, Jacobi Method, Gauss Seidal Method, Simpson(1/3), Simpson(3/8) and Trapeziodal Rule.
I have tried all the codes by making function file.
To execute the program first of all you have to define all the required function and variables in command window. For example to execute the program codes for Bisection Method, do the following in command window :-
>> f =inline('x^2+3*x+10'); (put your own function )
>>a=0.1; (put your own value)
>>b=2; (put your own value )
>>tol=0.0001; (put your own value )
>> bisection(f, a, b, tol) and press enter
OR you can directly use
>>bisection(f,0.1,2,0.000.1)
The main thing to remember is to satisfy the required function prototype.
function[]=bisection(f,a,b,tol);
n=round(log(abs(b-a)/tol)/log(2)); %Calcuation_of_no_of_iterations
i=1;
if f(a)*f(b)>0
disp('error');
end
fprintf('iteration\ta\t\tb\t\tp\t\tf(p)\n'); %Display_table
while i<n
p=(a+b)/2;
fprintf('%d\t\t%.2f\t\t%.2f\t\t%.2f\t\t%.2f\n\n\n',i,a,b,p,f(p)); %Display_table _with_successive _iterations
if f(a)*f(p)<0 &Condition_check
a=a;
b=p;
else
a=b;
b=p;
end;
i=i+1;
end;
fprintf('The solution is %.4f\n', p);
function[]=falsi(f,a,b,tol);
i=1;
if f(a)*f(b)>0
disp('error');
end;
while i<50
x=(a*f(b)-b*f(a))/(f(b)-f(a));
if f(a)*f(x)>0
a=a;
b=x;
else
a=x;
a=b;
if abs(x-a)||abs(x-b)==tol
fprintf('\nthe solution is %0.4f\n',x);
end;
break;
end;
i=i+1;
end;
function[]=secant(f,a,b,tol);
i=1;
if f(a)*f(b)>0
disp('error');
end;
while i<50
x=(a*f(b)-b*f(a))/(f(b)-f(a));
a=b;
b=x;
if abs(x-a)||abs(x-b)==tol
fprintf('\nthe solution is %0.4f\n',x);
break;
end;
i=i+1;
end;
function[]=newtongeneral(f,g,x0,p,tol);
x(1)=x0;
i=1;
while i<50 %Taking_arbitrary_no_50__but_You_can_also_use_infinite_loop_using_while(1)
x(i+1)=x(i)-p*(f(x(i))/g(x(i)));
if abs(x(i+1)-x(i))<=tol
X=x(i+1);
fprintf('The solution is x = %.4f\n',X);
break;
else
i=i+1;
end;
end;
function[]=newtonrap(f,g,x0,tol);
x(1)=x0;
i=1;
while (1)
x(i+1)=x(i)-(f(x(i)))/(g(x(i)));
if abs(x(i+1)-x(i))<=tol
X=x(i+1);
fprintf('The solution is x=%.4f\n',X);
break;
else
i=i+1;
end;
end;
function[]=euler(f,x0,y0,h);
i=1;
x(1)=x0;
y(1)=y0;
n=(y0-x0)/h;
while i<n
x(i)=x0+i*h;
y(i+1)=y(i)+h*f(x(i),y(i));
i=i+1;
end;
fprintf('The solutions are %.4f %.4f %.4f', y(1),y(2),y(3)); %_You_can_use_y(n)_upto_n_values_
function[]=jacobi(f,g,h,e);
i=1;
A(1)=f(0,0);
B(1)=g(0,0);
C(1)=h(0,0);
while i<50
A(i+1)=f(B(i),C(i));
B(i+1)=g(C(i),A(i));
C(i+1)=h(A(i),B(i));
if (abs(A(i+1)-A(i))==e && abs(B(i-1)-B(i))==e && abs(C(i-1)-C(i))==e)
X=A(i+1);
Y=B(i+1);
Z=c(i+1);
break;
else
i=i+1;
end;
end;
fprintf('\nThe solutions are X= %0.4f\n Y= %0.4f \n Z= %0.4f\n',A(i),B(i),C(i));
function[]=gaussseidal(f,g,h,e);
i=1;
A(1)=f(0,0);
B(1)=g(0,0);
C(1)=h(0,0);
while (1)
A(i+1)=f(B(i),C(i));
B(i+1)=g(C(i),A(i+1));
C(i+1)=h(A(i+1),B(i+1));
if (abs(A(i+1)-A(i))==e && abs(B(i-1)-B(i))==e && abs(C(i-1)-C(i))==e)
break;
X=A(i+1);
Y=B(i+1);
Z=c(i+1);
else
i=i+1;
end;
end;
fprintf('\nThe solutions are X= %0.4f\n Y= %0.4f \n Z= %0.4f\n',A(i),B(i),C(i));
function[]=simpsonthird(f,a,b,h);
n=(b-a)/h;
y0=f(a);
yn=f(b);
i=1;
sum1=0;
while (2*i-1)<n
x(2*i-1)=a+(2*i-1)*h;
y(2*i-1)=f(x(2*i-1));
sum1=sum1+y(2*i-1);
i=i+1;
end;
i=1;
sum2=0;
while 2*i<n-1
x(2*i)=a+(2*i)*h;
y(2*i)=f(x(2*i));
sum2=sum2+y(2*i);
i=i+1;
end;
I=(h/3)*(y0+yn+4*sum1+2*sum2);
fprintf('\nThe integrated value is %0.4f\n',I);
function[]=simpsoneight(f,a,b,h);
n=(b-a)/h;
y0=f(a);
yn=f(b);
i=1;
j=1;
k=1;
sum1=0;
sum2=0;
sum3=0;
while (3*i)<n-2
x(3*i)=a+(3*i)*h;
y(3*i)=f(x(3*i));
sum1=sum1+y(3*i);
i=i+1;
end;
while (3*j-2)<n
x(3*j-2)=a+(3*j-2)*h;
y(3*j-2)=f(x(3*j-2));
sum2=sum2+y(3*j-2);
j=j+1;
end;
while (3*k-1)<n-1
x(3*k-1)=a+(3*k-1)*h;
y(3*k-1)=f(x(3*k-1));
sum3=sum3+y(3*k-1);
k=k+1;
end;
I=(3*h/8)*(y0+yn+2*(sum1)+3*(sum2+sum3));
fprintf('\nThe Integrated value is %0.4f\n',I);
function []=trapezoidal(f,a,b,h);
n=(b-a)/h;
y0=f(a);
yn=f(b);
i=1;
sum=0;
while i<n
x(i)=a+i*h;
y(i) =f(x(i));
sum=sum+y(i);
i=i+1;
end;
I=(h/2)*(y0+yn+2*sum);
fprintf('\nThe Integrated value is %0.4f\n\n',I);
Thank you for looking this page. Please comment. Have a good day.
Thank you for looking this page. Please comment. Have a good day.
0 comments:
Post a Comment